Supervised Learning

Project: Finding Donors for CharityML

This notebook uses Python 3.6.

Getting Started

In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.

The dataset for this project originates from the UCI Machine Learning Repository. The datset was donated by Ron Kohavi and Barry Becker, after being published in the article "Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid". You can find the article by Ron Kohavi online. The data we investigate here consists of small changes to the original dataset, such as removing the 'fnlwgt' feature and records with missing or ill-formatted entries.


Exploring the Data

Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, 'income', will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database.

Implementation: Data Exploration

A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following:

Featureset Exploration


Preparing the Data

Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as preprocessing. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.

Transforming Skewed Continuous Features

A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: 'capital-gain' and 'capital-loss'.

Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed.

For highly-skewed feature distributions such as 'capital-gain' and 'capital-loss', it is common practice to apply a logarithmic transformation on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of 0 is undefined, so we must translate the values by a small amount above 0 to apply the the logarithm successfully.

Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed.

Normalizing Numerical Features

In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as 'capital-gain' or 'capital-loss' above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.

Run the code cell below to normalize each numerical feature. We will use sklearn.preprocessing.MinMaxScaler for this.

Implementation: Data Preprocessing

From the table in Exploring the Data above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called categorical variables) be converted. One popular way to convert categorical variables is by using the one-hot encoding scheme. One-hot encoding creates a "dummy" variable for each possible category of each non-numeric feature. For example, assume someFeature has three possible entries: A, B, or C. We then encode this feature into someFeature_A, someFeature_B and someFeature_C.

someFeature someFeature_A someFeature_B someFeature_C
0 B 0 1 0
1 C ----> one-hot encode ----> 0 0 1
2 A 1 0 0

Additionally, as with the non-numeric features, we need to convert the non-numeric target label, 'income' to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as 0 and 1, respectively. In code cell below, you will need to implement the following:

Shuffle and Split Data

Now all categorical variables have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.

Run the code cell below to perform this split.


Evaluating Model Performance

In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a naive predictor.

Metrics and the Naive Predictor

CharityML, equipped with their research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \$50,000 accurately. It would seem that using accuracy as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that does not make more than \$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \$50,000 is more important than the model's ability to recall those individuals. We can use F-beta score as a metric that considers both precision and recall:

$$ F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\left( \beta^2 \cdot precision \right) + recall} $$

In particular, when $\beta = 0.5$, more emphasis is placed on precision. This is called the F$_{0.5}$ score (or F-score for simplicity).

Looking at the distribution of classes (those who make at most \$50,000, and those who make more), it's clear most individuals do not make more than \$50,000. This can greatly affect accuracy, since we could simply say "this person does not make more than \$50,000" and generally be right, without ever looking at the data! Making such a statement would be called naive, since we have not considered any information to substantiate the claim. It is always important to consider the naive prediction for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \$50,000, CharityML would identify no one as donors.

Note: Recap of accuracy, precision, recall

Accuracy measures how often the classifier makes the correct prediction. It’s the ratio of the number of correct predictions to the total number of predictions (the number of test data points).

Precision tells us what proportion of messages we classified as spam, actually were spam. It is a ratio of true positives(words classified as spam, and which are actually spam) to all positives(all words classified as spam, irrespective of whether that was the correct classificatio), in other words it is the ratio of

[True Positives/(True Positives + False Positives)]

Recall(sensitivity) tells us what proportion of messages that actually were spam were classified by us as spam. It is a ratio of true positives(words classified as spam, and which are actually spam) to all the words that were actually spam, in other words it is the ratio of

[True Positives/(True Positives + False Negatives)]

For classification problems that are skewed in their classification distributions like in our case, for example if we had a 100 text messages and only 2 were spam and the rest 98 weren't, accuracy by itself is not a very good metric. We could classify 90 messages as not spam(including the 2 that were spam but we classify them as not spam, hence they would be false negatives) and 10 as spam(all 10 false positives) and still get a reasonably good accuracy score. For such cases, precision and recall come in very handy. These two metrics can be combined to get the F1 score, which is weighted average(harmonic mean) of the precision and recall scores. This score can range from 0 to 1, with 1 being the best possible F1 score(we take the harmonic mean as we are dealing with ratios).

Question 1 - Naive Predictor Performace

Please note that the the purpose of generating a naive predictor is simply to show what a base model without any intelligence would look like. In the real world, ideally your base model would be either the results of a previous model or could be based on a research paper upon which you are looking to improve. When there is no benchmark model set, getting a result better than random choice is a place you could start from.

Supervised Learning Models

The following are some of the supervised learning models that are currently available in scikit-learn that you may choose from:

Question 2 - Model Application

List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen

Answer:

Source: Pros and cons of various Machine Learning algorithms

A: Random Forest

Additional source: Random Forest

B: Gradient Boost

Additional sources: Gradient boosting, What are the advantages/disadvantages of using Gradient Boosting over Random Forests?

C: SVC

Additional source: Support-vector machine

Implementation - Creating a Training and Predicting Pipeline

To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section. In the code block below, you will need to implement the following:

Implementation: Initial Model Evaluation

In the code cell, you will need to implement the following:

Note: This may take some time to run!


Improving Results

In this final section, you will choose from the three supervised learning models the best model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (X_train and y_train) by tuning at least one parameter to improve upon the untuned model's F-score.

Question 3 - Choosing the Best Model

Which model has the highest score? Your answer should include discussion of the:

Answer:

Question 4 - Describing the Model in Layman's Terms

Answer:

The machine learning model we will use is called Gradient Boosting. It is based upon the concept of using decision trees. What are decision trees? Think of something like a flow chart, where at each level you are asked a question regarding a feature of your data set and you must choose a path based upon the value of that feature. In essence, we are creating a "split" point in our tree. For example, is the user's age > 40? We continue to traverse down the tree until we reach the last level in which we chose the answer (i.e. the classification) based upon the paths we've chosen all along.

In Gradient Boosting, we improve the performce of a single decision tree by creating an ensemble of trees. We create successive trees one at a time, each time correcting errors in the previous model. In each iteration, we use a technique called gradient descent to "train", i.e. create the best split points in order to minimize our errors. We stop training when our errors reach an acceptable level or it is no longer possible to make improvements.

Sources: Gradient boosting, What are the advantages/disadvantages of using Gradient Boosting over Random Forests?, A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning

Implementation: Model Tuning

Fine tune the chosen model. Use grid search (GridSearchCV) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:

Note: Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!

Question 5 - Final Model Evaluation

Note: Fill in the table below with your results, and then provide discussion in the Answer box.

Results:

Metric Unoptimized Model Optimized Model
Accuracy Score 0.8630 0.8718
F-score 0.7395 0.7545

Answer:


Feature Importance

An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \$50,000.

Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a feature_importance_ attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset.

Question 6 - Feature Relevance Observation

When Exploring the Data, it was shown there are thirteen available features for each individual on record in the census data. Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?

Answer:

  1. Occupation: This seems like it would be the biggest driver of whether or not someone makes more than 50K per year, as most people are wage earners and occupation determines what wage you earn.
  2. Education-num: Education often determines occupation and higher payer jobs most often require higher amounts (years) of education.
  3. Age: Older people are likely to have more work experience, which increases the likelihood that they earn more money. The opposite is likely true for younger people.
  4. Capital-gain: Can offset total income. High values would likely increase the possibility that someone earns more than 50k.
  5. Capital-loss: Can offset total income. High values would likely decrease the possibility that someone earns more than 50k.

Implementation - Extracting Feature Importance

Choose a scikit-learn supervised learning algorithm that has a feature_importance_ attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.

In the code cell below, you will need to implement the following:

Question 7 - Extracting Feature Importance

Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \$50,000.

Answer:

Feature Selection

How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of all features present in the data. This hints that we can attempt to reduce the feature space and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set with only the top five important features.

Question 8 - Effects of Feature Selection

Answer: